Focus 2000

Biology on the Move

Chairs

Robert Full UC Berkeley

Alan Rudolph DARPA

- 1. What are critical technical barriers, enablers and opportunities for opening the vista of technological applications?
- 2. What are the potential technological advancements over the temporal horizon (3-15 years)
- 3. What are the Defense relevant implications of success?

Vision - Next Revolution?

Future

Internet

Worldwide Information Transfer

Eyes and Ears

Age of Integration

Neurosciences

Infrastructure to Build New Community

BioMotion

Programmable Work

Programmable Work Central Challenge

Computational Modeling

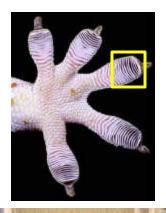
Biointerfaces

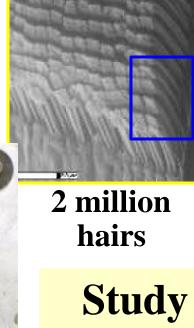
Challenge

Even if we had exceptional

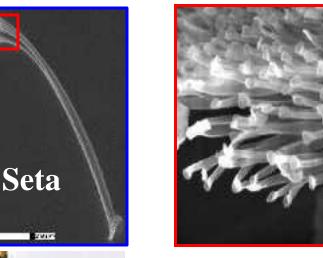
Batteries
Actuators
Sensors

Could not make a mobile platform with Biological Performance


How is energy managed?


What is being controlled?

System integration?


Adhesion for Climbing

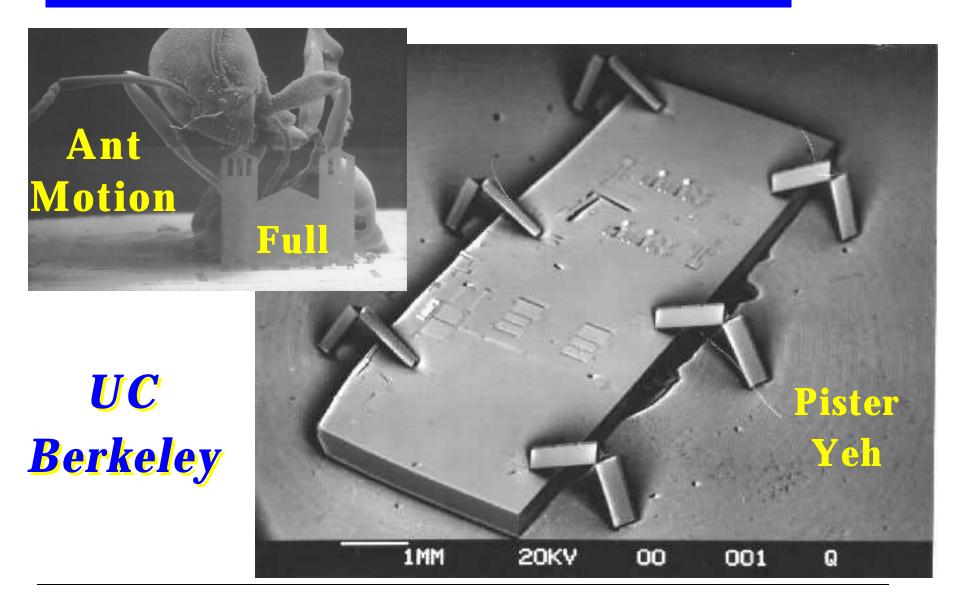
2 billion ends per hair

Study animal running up wall.

How do hairs stick?

Adhesive Force of Single Hair

Could NOT detremine function of adhesive hair without knowledge of use during locomotion


Integrated System

QuickTimeTM and a Video decompressor are needed to see this picture.

Hairs require preloading and peeling. Use intermolecular forces

Walking Silicon

Key Enablers

- 1. Design concept
- 2. Energy management
- 3. Hierarchical control

4. Robustness

Design concept

1. Biological inspiration vs direct copying

2. Taming of complexity

Design concept

1. Biological inspiration vs direct copying

2. Taming of complexity

Biomimicry

Evolution - "just good enough"

Technologies

Human

Large Flat, rt angles Stiff Rolling devices Few actuators & sensors

Natural

Small Curved Bends, twists Legs Many actuators & sensors

Vogel, 1998

Inspiration

Use Concepts
And Analogies
When
Advantageous

Nature provides useful hints at what is possible.
As human technology takes on more of the characteristics of nature, nature becomes a more useful teacher.

Design concept

1. Biological inspiration vs direct copying

2. Taming of complexity

Reduce Complexity

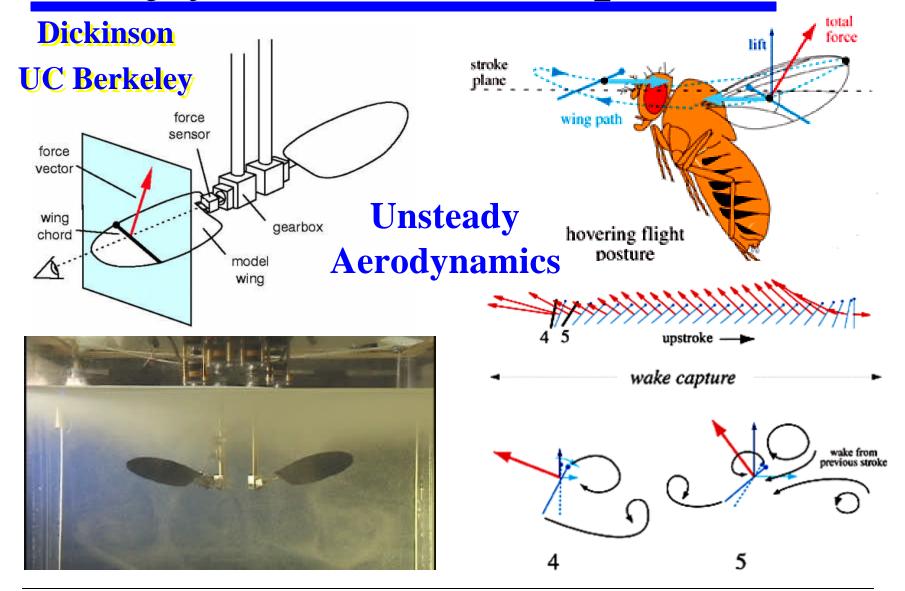
Analyze motion of animal. Search for joint synergies. Reduce degrees of freedom from 9 to 2 per leg.

Ghost Crab - UC Berkeley

Ariel First Legged Amphibious Robot - IS Robotics

QuickTimeTM and a decompressor are needed to see this picture.

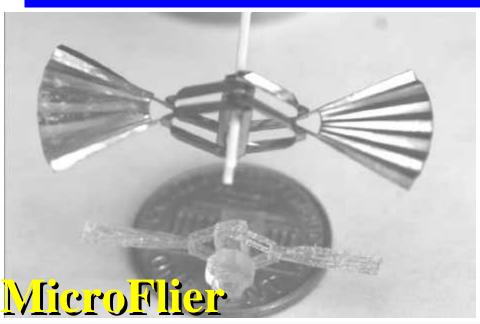
Energy management

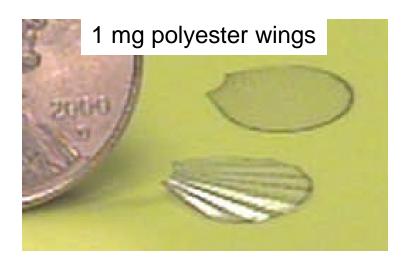


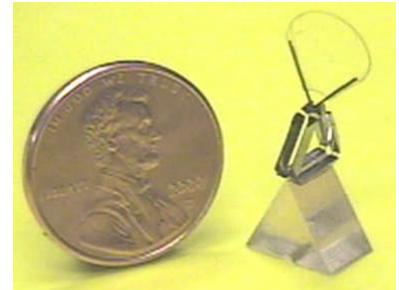
- 1. Energy exchange and storage
- 2. Interaction with environment
- 3. Performance of actuators
 - energy density
 - broad role

Focus 2000

Robofly & Wake Recapture




Focus 2000


Tuned Thorax & Wing Design

MFI component	size	total mass
4-bar frames (2 per wing)	links 5,5,4, 0.7 mm	20 mg
1 mm box beam base frame (mm)	$10 \times 4 \times 1 \text{ mm}$	8 mg
piezo actuator (2 per frame)	$0.25 \times 5 \times 0.2 \text{ mm}$	15 mg
wings (polyester)	$5 \times 10 \times .01 \text{ mm}$	3 mg
total structure		43 mg

Fearing UC Berkeley

Hierarchical control

- 1. Identify target of control
- 2. Passive dynamics
 - smart or tuned mechanical system
- 3. Sensory fusion and integration

Focus 2000

Flexible Leg

5-Bar Linkage

Deflected Specimen of Multi-Material

Arthro-Leg Principles

Stanford University Cutkosky and Cham

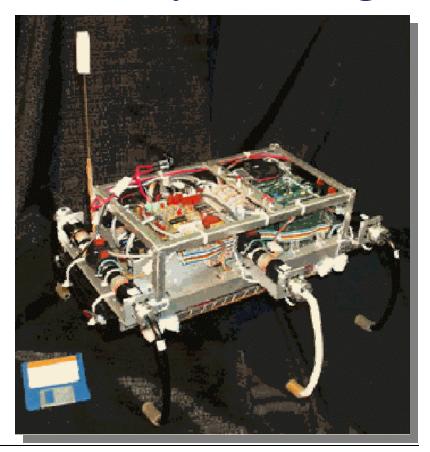
Shape Deposition

Manufacturing

allows Heterogeneous

Materials

Dynamic Hexapod



Rhex

Biologically
Inspired
Bouncing
Robot

Buehler & Koditschek

McGill University & University of Michigan

Robustness

1. Redundancy

2. Modularity

3. Learning and adaptation

Defense Relevant Implications

- 1. Search and rescue (e.g. after a terrorist bombing or in a fire)
- 2. Detection, sampling and removal of biohazards, mines and other devices
- 3. Reconnaissance and surveillance
- 4. Human augmentation (extend sensory and motor capability)

Focus 2000 8/23/00 23

BioMotion Vision

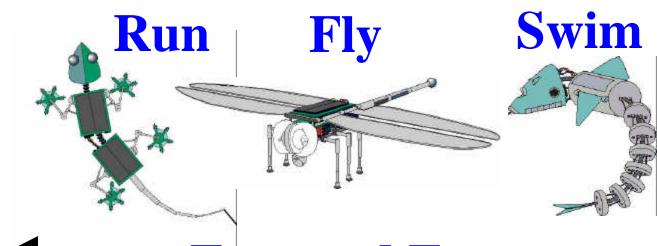
- 1. Control and program motion
- 2. Move in any environment
- 3. Manipulate any object

Building the Community

- 1. Identifying the community
- 2. Mutualistic Teaming
- 3. Integrative Training
- 4. Building strong scientific foundation to hasten revolutionary deliverables

Focus 2000 8/23/00 25

Vision - Next Revolution


Internet

Worldwide Information Transfer

Future

Programmable WorkLegs and Hands

Eyes and Ears

Koditschek - UM